

# 产品目录

| 1        | 特性                                             | 9         |
|----------|------------------------------------------------|-----------|
|          | 典型应用领域·······                                  |           |
|          |                                                |           |
|          | 产品说明                                           |           |
| 4.       | 器件信息                                           | 3         |
|          | 管脚定义与功能·······                                 |           |
|          | 典型应用图                                          |           |
|          | 极限工作参数                                         |           |
|          | 电器特性                                           |           |
|          | 测试曲线图····································      |           |
| ر.<br>10 | 应用说明                                           | ں<br>7/3  |
| 10.      | LAOUT注意事项 ···································· | ا /ر<br>د |
| 11.      | TWO I 任 图 事 //                                 |           |
| 12       | <b>判袋尺寸图</b>                                   | •••       |



### SL5316 无感式升压、F类、音频功率放大器

## ■ SL5316产品说明

SL5316 是一款内置自适应 升压 F 类音频功率放大芯片, 具有 AGC 防破音功能、AB/D 类模式切换、 自适应、超低底噪、超低 EMI。自 适应升压在输出幅度较小时升压电 路不工作, 功放直接由电源供电, 当输出较大时内部自动启动升压电 路, 功放供电电压为升压电压, 达 到更大的输出功率。SL5316 有四 种 AGC 模式可选择,能满足各种不 同的需求,并且保护扬声器避免过 载而损坏。芯片具有 AB/D 类切换 功能, AB 类时可减少功放对 FM 干 扰。全差分结构有效的提高功放对 RF 噪声抑制。Charge Pump 升压方 式, 无需外部电感、肖特基二极管、 达到尽可能减少外围元件, 节省成 本的目的。

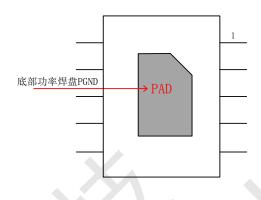
### ■ SL5316封装信息

| 芯片型号   | 封装类型    | 封装尺寸 |
|--------|---------|------|
| SL5316 | ESOP-10 |      |

## ■ SL5316特性

- ◆ 优异的爆破声抑制电路
- ◆ 一线脉冲控制
- ◆ 升压电压6.5V
- ◆ 四种自动增益控制 (AGC)
- ◇ 超低底噪、超低失真
- ◆ 开启、关闭POP-click抑制功能
- ◆ 10% THD+N, VBAT=4.2V, 4Ω+15uH 负载下 提供高达 4.8W的输出功率
- ♦ 1% THD+N, VBAT =4.2V, 4Ω +15uH 负载下提供高达 4.2W 的输出功率
- ◇ 短路保护 过温保护
- ◆ 关断电流 < 1uA

### ■ SL5316应用

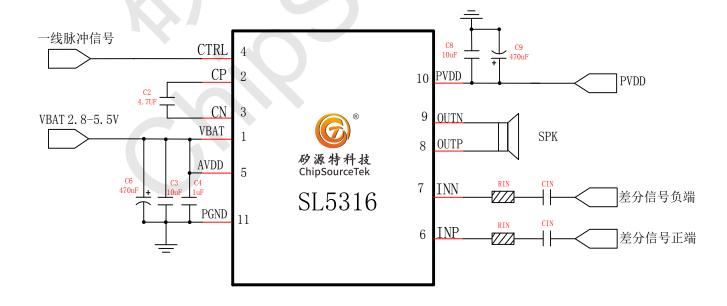

- ◆ 蓝牙音箱
- ◆ 拉杆音箱
- ◆ 便携式音箱
- ♦ 扩音器
- ◆ 电视机
- ◆ 导航仪



# ShenZhen ChipSoureTek Technology Co.,Ltd.

### SL5316管脚定义与信息:






TOP VIEW

BOTTOM VIEW

| 管脚编号 | 管脚名称 | 10 | 管脚功能            |  |
|------|------|----|-----------------|--|
| 1    | VBAT | I  | 功率电源正端          |  |
| 2    | CP   | 0  | Flying正端        |  |
| 3    | CN   | 10 | Flying负端        |  |
| 4    | CTRL | I  | 关断、防破音、AB/D类控制脚 |  |
| 5    | AVDD | I  | 模拟电源正极          |  |
| 6    | INP  | Í  | 音频信号输入正端口       |  |
| 7    | INN  | I  | 音频信号输入负端口       |  |
| 8    | OUTP | 0  | 音频信号输出正端口       |  |
| 9    | OUTN | 0  | 音频信号输出负端口       |  |
| 10   | PVDD | 0  | 升压后电源管脚         |  |
| 11   | PGND | 0  | 电源负极            |  |

## SL5316典型应用图:



### SL5316极限工作参数:

| • | 输入电压范围 · · · · · · · · · · · · · · · · · · · | ·····2.8-5.5V |
|---|----------------------------------------------|---------------|
| • | CTRL管脚电压···································· | ·····0-5V     |
| • | 最大结温•••••                                    | ······150°C   |
| • | ESD 电压······                                 | 2000V         |
| • | 推荐工作温度范围                                     |               |
| • | 储存温度范围•••••••                                |               |
| • | 焊接温度(10S内)·······                            | +230℃         |

**备注**: 上述极限工作参数范围可能导致芯片永久性的损坏。长时间暴露在上述任何极限条件下可能会影 响芯片的可靠性和寿命。

### SL5316电气特性:

测试条件 A<sub>V</sub>=22dB, T<sub>A</sub>=25℃, 无特殊说明的项目均是在VBAT=3.7V, 4Ω+15uH

| 描述                      | 符号                  | 测试条件                             | 最小值  | 典型值    | 最大值  | 单位                   |
|-------------------------|---------------------|----------------------------------|------|--------|------|----------------------|
| 关断电流                    | Ishdn               | VBAT =3.7V                       | _    | 1      |      | uA                   |
| <b>数</b> 大 山 次          |                     | VBAT =3.7V, D类                   | -    | 5.8    | _    | mΛ                   |
| 静态电流                    | ${ m I}_{ m DD}$    | VBAT =3.7V,AB类                   |      | 5.8    |      | mA                   |
| 静态底噪                    | $V_{\mathrm{N}}$    | VBAT=3.7V , AV=22dB, Awting      |      | 100    |      | μVrms                |
| 输出失调电压                  | $V_{os}$            | VIN=0V                           |      | 10     |      | mV                   |
| D类频率                    | $F_{sw}$            | VBAT=4. 2V                       |      | 510    |      | kHz                  |
| 启动时间                    | $T_{ m start}$      | VBAT=4.2V D类模式                   |      | 175    |      | Ms                   |
| 启动时间                    | $T_{ m start}$      | VBAT=4.2V AB类模式                  |      | 85     |      | Ms                   |
| 增益                      | Av                  | D类模式,R <sub>IN</sub> =20k        |      | 21.5   |      | dB                   |
| 电源关闭电压                  | $V_{\rm ddsd}$      | CTRL=0V                          | <2   |        |      | V                    |
| 电源开启电压                  | $V_{\rm ddopen}$    | CTRL=3.3V                        | ≥2.8 |        | 5    | V                    |
| 过温保护                    | $O_{	extsf{TP}}$    |                                  |      |        | 160  | $^{\circ}\mathbb{C}$ |
| 静态导通电阻                  | Pdcon               | IDS=0.5A P_MOSFET                |      | 130    |      | mΩ                   |
| 静态导通电阻   Rdson          |                     | VGS=4. 2V N_MOSFET               |      | 110    |      | III 25               |
| 内置输入电阻                  | Rs                  |                                  |      | 20     |      | KΩ                   |
| 内置反馈电阻                  | Rf                  |                                  |      | 480    |      | KΩ                   |
| 效率                      | η                   | VBAT=4. 2V, PVDD=6. 5V, P0=0. 5W |      | 80     |      | %                    |
| 高电平电压                   | Hvse1               | VBAT=3-5V                        | 3    |        |      | V                    |
| 低电平电压                   | Vsdopen             | VBAT=3-5V                        |      |        | 0.5  | V                    |
| 关断电压                    | $0FF_{\text{CTRL}}$ | VBAT=3-5V                        |      |        | 0. 5 |                      |
| AB类模式 ABctrl D类模式 Dctrl |                     | VBAT=3-5V                        | 0.9  |        | 1. 3 | V                    |
|                         |                     | VBAT=3-5V                        | 2.5  |        | 8    | V                    |
| AGC2模式                  | AGC2ctrl            | VBAT=3-5V                        | 1.6  |        | 2    |                      |
| 信噪比                     | SRN                 | PO=1W Av=22dB, (Awting)          |      | -86. 5 |      | dB                   |



# ShenZhen ChipSoureTek Technology Co.,Ltd.

#### Class\_D功率

A<sub>v</sub>=22dB, T<sub>A</sub>=25℃, 无特殊说明的项目均是在VDD=4. 2V, 4Ω+15uH条件下测试:

| 参数       | 符号    | 测试电压                                                         | 测试条件                             | 典型值    | 单位 |
|----------|-------|--------------------------------------------------------------|----------------------------------|--------|----|
| 输出功率     | P0    | VBAT=4.2                                                     | f=1kHz, RL=4Ω+15uH, THD+N=1%,    | 4. 2   | W  |
|          | ru    | VBAT=4. 2                                                    | f=1kHz, RL=4 Ω +15uH, THD+N=10%, | 5. 0   | W  |
| 总谐波失真加噪声 | THD+N | VBAT =4. 2V , PVDD=6. 5V, $P_o$ =1W, $R_L$ =4 $\Omega$ +15uH |                                  | 0. 035 | %  |

### ■ SL5316性能特性曲线

### 特性曲线测试条件(T<sub>4</sub>=25℃)

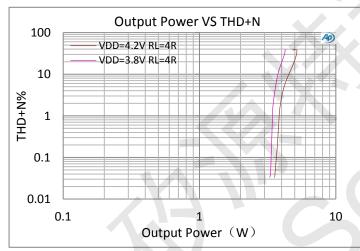



图1: Output Power VS THD+N

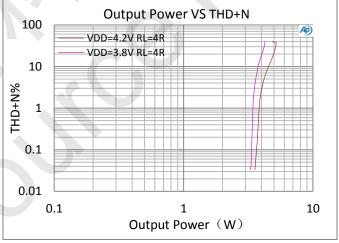
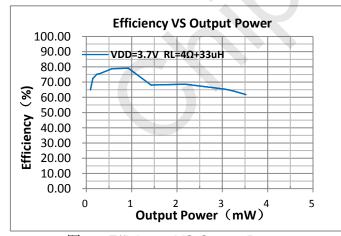
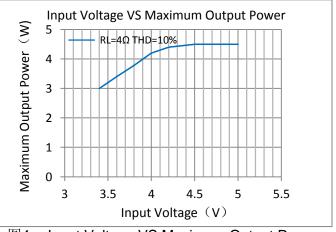





图2: Output Power VS THD+N



Efficiency VS Output Power



Input Voltage VS Maximum Output Powe



# ShenZhen ChipSoureTek Technology Co.,Ltd.



图5: Frequency Response

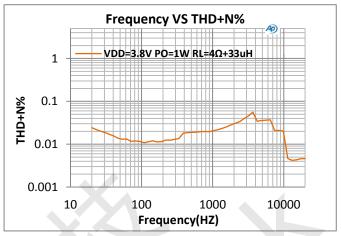
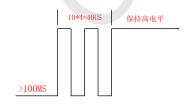


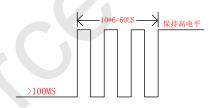

图6: Frequency VS THD+N%

### ■ SL5316应用说明

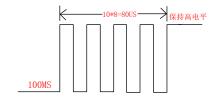
SL5316有两种控制方式: 软件控制(一线脉 冲)和硬件控制(高低电平控制),一线脉冲控 制的好处是可以节省主控10,仅使用一个10口即 可切换功放多种工作模式。


CTRL管脚软件控制 (一线脉冲): CTRL管脚输入 不同脉冲信号切换功放:D类防破音1 (AGC1: THD ≦5%)、D类防破音2 (AGC2: THD≦1%)、D类防 破音3 (AGC3: THD≦1%)、D类防破音4 (AGC4: THD≦1%)、AB类和D类模式。

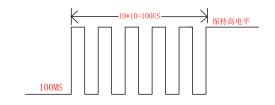
CTRL管脚软件控制说明(一线脉冲): CTRL管脚输 入不同脉冲信号切换功放AB类、D类各种模式。


1、芯片切换到D类普通模式波形:

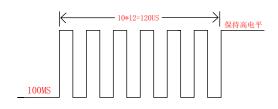



2、芯片切换到D类防破音模式1(THD≤5%)波形




3、芯片切换到D类防破音模式2(THD≤1%)波形:




芯片切换到D类防破音模式3(THD≦2%)波形:



5、芯片切换到D类防破音模式4(THD≤2%)波形:



6、芯片切换到AB类模式波形:



TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com



## ShenZhen ChipSoureTek Technology Co.,Ltd.

#### 硬件控制状态

硬件控制(高低电平控制):

CTRL管脚电压<0.5V,功放芯片关断。

CTRL管脚电压0.9-1.3V, 功放芯片工作在AB类模 式升压关闭。

CTRL管脚电压1.6-2V, 功放芯片工作在防破音类 式。

CTRL管脚电压2.2-3.3V, 功放芯片工作在D类升 压模式(无防破音)。

| CTRL管脚     | 芯片状态   |
|------------|--------|
| <0.5V      | 关闭     |
| 0. 9-1. 3V | AB类模式  |
| 1. 6-2V    | 防破音2   |
| 2. 5-3. 3V | D类升压模式 |

### 功放增益控制

D类模式时输出为(PWM信号)数字信号,AB类模 式输出模拟信号,其增益均可通过RIN调节。

$$AV = \frac{480k}{20k + R_{IN}}$$

AV为增益,通常用dB表示,上述计算结果单位为 倍数、20Log倍数=dB。

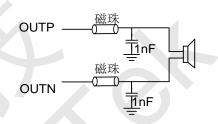
RIN电阻的单位为KΩ、480KΩ为内部反馈电阻 (RF), 20K Ω 为内置串联电阻 (RS), RIN由用 户根据实际供电电压、输入幅度、和失真度定 义。 如RIN=20K时, ≈12倍、AV≈22dB

### ● 输入电容

输入电容(CIN)和输入电阻(RIN)组成高通滤波 器,其截止频率为:

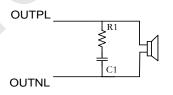
$$f_C = \frac{1}{2\pi \times (R_{IV} + 20K) \times C_{IV}}$$

Cin电容选取较小值时,可以滤除从输入端耦合入 的低频噪声,同时有助于减小开启时的POPO


### 电荷泵Flying电容Cf

Flying 电容用于在电源和电荷泵之间传递能 量, Flying 电容容值及电容的 ESR 直接影响电荷 泵的负载能力。 Flying 电容越大,负载调整能力 越强,功放的输出功率 越大。推荐使用 4.7uF,耐 压 16V 以上低 ESR 的 X7R、 X5R 陶瓷电容。电荷泵 升压输出电容(PVDD) 电荷泵升压输出电容 PVDD

的容值和 ESR 会直接影响 电荷泵升压输出电压的 稳定性,从而影响功放的整体 性能。推荐使用 470uF 低 ESR 的电解电容,保持电容 的耐压在 10V 以上。

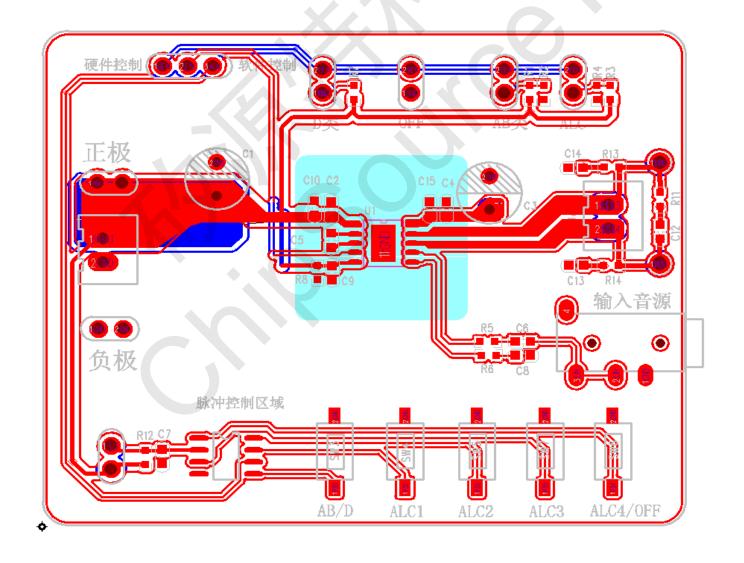

#### EMI处理

对于输出走线较长或靠近敏感器件时,建议加上 磁珠和电容,能有效减小EMI。器件靠近芯片放置。



#### RC缓冲电路

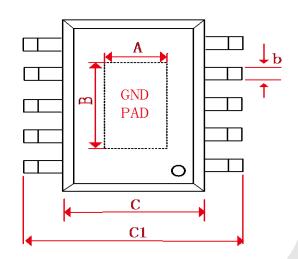
如喇叭负载阻抗值较小时,建议在输出端并一个电 阻和一个电容来吸收电压尖峰,防止芯片工作异常。 电阻推荐使用:  $3\Omega-8\Omega$ , 电容推荐: 500pF-10nF。

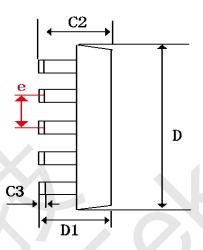





### ■ SL5316 PCB设计注意事项

- ▶ PVDD 端按负载选用 470uF 或 1000uf 插件电容和 10uF 的陶瓷电容并联,电容尽量靠近 PVDD 管脚。VBAT 端同样选用 470uF 插件电容和 10uF 的陶瓷电容并联.
- ▶ 供电脚(VBAT、PVDD)走线尽量粗,最好使用敷铜来连接网络,如走线或敷铜中必须打过孔应使用多孔连接,并加大过孔内径,不可使用单个过孔直接将电源走线连接,因为大电流会引起较大的压降,会导致压降比较大,对输出功率有较大影响,电源中如存在较大的阻抗甚至影响声音会出现卡顿情况。
- ▶ 输入电容(Cin)、输入电阻(Rin)尽量靠近功放芯片管脚放置,走线最好使用包地方式,可以有效的抑制其他信号耦合的噪声。
- ➤ SL5316 的底部散热片是芯片唯一接地点,必须连接在 PCB 板上,设计 PCB 时,底部一定需要开窗,用与芯片和 PCB 的 GND 连接,同时对芯片散热有很大的帮助, PCB 使用大面积敷铜来连接芯片中间的散热片,并有一定范围的露铜, SL5316 输出连接到喇叭的管脚走线管脚尽可能的短,并且走线宽度需在 0.5mm 以上。


## ■ SL5316 DEMO板参考图(仅供参考)




TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com



### ■ SL5316芯片封装ESOP-10







| Symbol | Dimensions In N | Iilli meters | Dimensions In Inches |        |  |
|--------|-----------------|--------------|----------------------|--------|--|
|        | Min             | Max          | Min                  | Max    |  |
| Α      | 1. 80           | 2. 10        | 0. 070               | 0. 082 |  |
| В      | 3. 10           | 3. 40        | 0. 122               | 0. 133 |  |
| b      | 0. 38           | 0. 50        | 0. 015               | 0.019  |  |
| С      | 3. 80           | 4. 00        | 0. 149               | 0. 157 |  |
| C1     | 6. 00           | 6. 20        | 0. 236               | 0. 244 |  |
| C2     | 1. 35           | 1. 55        | 0. 053               | 0.061  |  |
| C3     | 0. 1            | 0. 25        | 0.004                | 0. 010 |  |
| D      | 4. 8            | 5. 0         | 0. 189               | 0. 197 |  |
| D1     | 1. 35           | 1. 55        | 0. 053               | 0.061  |  |
| е      | 1. 00 (BSC) 0.  |              | )39 (BSC)            |        |  |
| L      | 0. 520          | 0.720        | 0.02                 | 0. 028 |  |
| θ      | 00              | 8°           |                      |        |  |

声明 1: 深圳市矽源特科技有限公司保留在任何时间、不另行通知的情况下对规格书的更改权。

声明 2:深圳市矽源特科技有限公司提醒:请务必严格应用建议和推荐工作条件使用。如超出推荐工作条件以及不按应用建议使用,本公司不保证产品后 续的任何售后问题.

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

E-mail: Sales@ChipSourceTek.com Tony.Wang@ChipSourceTek.com